über Mittag schlafen - definition. What is über Mittag schlafen
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

ENTIRE FUNCTION DEPENDING ON TWO COMPLEX PARAMETERS Α AND Β
Mittag-Leffler funcion; Mittag-leffler function; Mittag-Leffler Function
  • The Mittag-Leffler function can be used to interpolate continuously between a Gaussian and a Lorentzian function.

Über alles (disambiguation)         
WIKIMEDIA DISAMBIGUATION PAGE
Uber Alles (disambiguation); Über Alles (disambiguation)
Über alles (German for above all) is a phrase from "Deutschlandlied", the German national anthem. It may also refer to:
uber         
  • Mid-Market]] neighborhood of San Francisco
  • [[Travis Kalanick]], former CEO of Uber, in 2013
  • Uber logo used from February 2016 until September 2018
PEER-TO-PEER RIDESHARING, FOOD DELIVERY, AND TRANSPORTATION NETWORK COMPANY HEADQUARTERED IN SAN FRANCISCO, CALIFORNIA
UberCab; Uber (application); Uber.com; Uber Technologies; UberX; Uber X; Uber (app); Regulatory opposition to Uber; Über (transportation); Uber taxi; Uber app; UberRUSH; Criticism of Uber (company); Über (company); Greyball; Elevate (company); Uber Technologies, Inc; Uber Technologies Inc.; Uber (company); UberBlack; UberXL; UberWAV; UberSUV; UberKIDS; UberTAXI; UberBOAT; UberASSIST; Uber Black; Uber black; Uber SUV; UberPOOL; UBER; Uber Elevate; Criticism of Uber; Locations where Uber serves; Uber Technologies, Inc.; Draft:Uber Comfort; Uber Pool; Uber Inc
meaning really or a lot of. it's used by geeks everywhere, and it's german. i have no idea who started it in it's geeky context in north america tho. it can be used as a prefix to almost any descriptive word.
that k10k site is uberpixelly-smooth. also, burgerking whoppers are uberyummy!
2002 Thomas & Uber Cup         
BADMINTON CHAMPIONSHIPS
2002 Uber Cup; 2002 Thomas Cup
The 2002 Thomas & Uber Cup was held in Guangzhou, China from May 9 to May 19, 2002. It was the 22nd tournament of World Men's Team Badminton Championships of Thomas Cup and 19th tournament of World Women's Team Badminton Championships of Uber Cup.

ويكيبيديا

Mittag-Leffler function

In mathematics, the Mittag-Leffler function E α , β {\displaystyle E_{\alpha ,\beta }} is a special function, a complex function which depends on two complex parameters α {\displaystyle \alpha } and β {\displaystyle \beta } . It may be defined by the following series when the real part of α {\displaystyle \alpha } is strictly positive:

E α , β ( z ) = k = 0 z k Γ ( α k + β ) , {\displaystyle E_{\alpha ,\beta }(z)=\sum _{k=0}^{\infty }{\frac {z^{k}}{\Gamma (\alpha k+\beta )}},}

where Γ ( x ) {\displaystyle \Gamma (x)} is the gamma function. When β = 1 {\displaystyle \beta =1} , it is abbreviated as E α ( z ) = E α , 1 ( z ) {\displaystyle E_{\alpha }(z)=E_{\alpha ,1}(z)} . For α = 0 {\displaystyle \alpha =0} , the series above equals the Taylor expansion of the geometric series and consequently E 0 , β ( z ) = 1 Γ ( β ) 1 1 z {\displaystyle E_{0,\beta }(z)={\frac {1}{\Gamma (\beta )}}{\frac {1}{1-z}}} .

In the case α {\displaystyle \alpha } and β {\displaystyle \beta } are real and positive, the series converges for all values of the argument z {\displaystyle z} , so the Mittag-Leffler function is an entire function. This function is named after Gösta Mittag-Leffler. This class of functions are important in the theory of the fractional calculus.

For α > 0 {\displaystyle \alpha >0} , the Mittag-Leffler function E α , 1 ( z ) {\displaystyle E_{\alpha ,1}(z)} is an entire function of order 1 / α {\displaystyle 1/\alpha } , and is in some sense the simplest entire function of its order.

The Mittag-Leffler function satisfies the recurrence property (Theorem 5.1 of )

E α , β ( z ) = 1 z E α , β α ( z ) 1 z Γ ( β α ) , {\displaystyle E_{\alpha ,\beta }(z)={\frac {1}{z}}E_{\alpha ,\beta -\alpha }(z)-{\frac {1}{z\Gamma (\beta -\alpha )}},}

from which the Poincaré asymptotic expansion

E α , β ( z ) k = 1 1 z k Γ ( β k α ) {\displaystyle E_{\alpha ,\beta }(z)\sim -\sum _{k=1}{\frac {1}{z^{k}\Gamma (\beta -k\alpha )}}}

follows, which is true for z {\displaystyle z\to -\infty } .